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Abstract
Indirect drive converts high power laser light into x-rays using small high-Z cavities called 
hohlraums. X-rays generated at the hohlraum walls drive a capsule filled with deuterium–
tritium (DT) fuel to fusion conditions. Recent experiments have produced fusion yields 
exceeding 50 kJ where alpha heating provides ~3×  increase in yield over PdV work. Closing 
the gaps toward ignition is challenging, requiring optimization of the target/implosions and the 
laser to extract maximum energy. The US program has a three-pronged approach to maximize 
target performance, each closing some portion of the gap. The first item is optimizing the 
hohlraum to couple more energy to the capsule while maintaining symmetry control. Novel 
hohlraum designs are being pursued that enable a larger capsule to be driven symmetrically 
to both reduce 3D effects and increase energy coupled to the capsule. The second issue being 
addressed is capsule stability. Seeding of instabilities by the hardware used to mount the 
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capsule and fill it with DT fuel remains a concern. Work reducing the impact of the DT fill 
tubes and novel capsule mounts is being pursed to reduce the effect of mix on the capsule 
implosions. There is also growing evidence native capsule seeds such as a micro-structure 
may be playing a role on limiting capsule performance and dedicated experiments are being 
developed to better understand the phenomenon. The last area of emphasis is the laser. As 
technology progresses and understanding of laser damage/mitigation advances, increasing the 
laser energy seems possible. This would increase the amount of energy available to couple 
to the capsule, and allow larger capsules, potentially increasing the hot spot pressure and 
confinement time. The combination of each of these focus areas has the potential to produce 
conditions to initiate thermo-nuclear ignition.

Keywords: inertial fusion, indirect drive, laser fusion, inertial fusion energy

(Some figures may appear in colour only in the online journal)

1.  Introduction

Indirect drive (ID) inertial confinement fusion (ICF) converts 
high power laser light into x-rays traditionally using small 
cylindrically-shaped, high-Z radiation cavities called hohl-
raums. A spherical capsule placed at the center of the hohl-
raum containing deuterium–tritium (DT) fuel absorbs x-rays 
ablating the outer surface of the capsule and imploding via 
rocket motions. For ‘hot spot’ ignition, the primary approach 
to high gain ICF [1], the capsule has a layer of DT ice just 
inside the capsule with residual DT gas filling the central 
cavity. The capsules have traditionally been made of plastic 
(CH) or beryllium [2–6], but recently high density carbon 
(HDC) became the standard capsule material for experiments 
on the National Ignition Facility (NIF). Compression of the 
DT gas forms a central ‘hot spot’ where the fusion is initiated 
and under the right conditions is self-heating by capturing 
the alpha particles from the fusion reactions far exceeds the 
cooling mechanisms, causing the hot spot to ignite. Once a 
robust burning plasma is formed in the ‘hot spot’, ablation and 
heating of the inner surface of ice layer begins a propagating 
burn generating multi-megajoule neutron yields.

Since the completion of the NIF [7] and cryogenic target 
capabilities came online in 2010 [8, 9], much progress has 
been made towards ignition with more than a 20×  increase in 
fusion neutron production and a three times increase in ‘hot 
spot’ pressure, as well as significant enhancements in diag
nostic capabilities to understand capsule and hohlraum per-
formance, and advancement in laser facility optics damage 
mitigation techniques and precision. Early experiments using 
high-gain (defined as the ratio of the output neutron energy to 
the laser input energy) target-designs [10] highly optimized 
for peak performance, fell well below expectation. These 
experiments under-performed due to the combination of 3D 
effects such as high mode 4-pi mix [11–15] and low mode 
asymmetries [16] amplified by high convergence [17, 18]. 
Experiments following the initial high gain target designs 
traded gain for improved performance. The experiments 
included the ‘high foot’ campaign [19], which increased the 
power in the initial portion of the laser pulse called the ‘foot’, 
shown in figure 1 with a low foot pulse in black and a high 

foot pulse in red. The increased power in the ‘foot’ of the 
pulse has three primary effects: smoothing initial seeds for 
ablative hydrodynamic instability, increasing the scale-length 
of the ablation-front, and increasing the internal energy of the 
fuel reducing the theoretical compression and convergence. 
These experiments improved the performance by more than 
an order of magnitude and demonstrated self-heating of the 
‘hot spot’ for the first time in ICF [20–22]. However, the ‘high 
foot’ implosions were ultimately limited in performance by 
laser backscatter reducing the amount of drive available for 
the targets and time-dependent cross-beam energy transfer 
affecting symmetry control [23–27], as well as feature driven 
shell perforations due to the tent [28–30]. Summaries of this 
work can be found in references by Meezan et  al [31] and 
Edwards et al [17].

Over the past few years, target design changes have 
advanced implosion performance. Moving to low gas filled 
hohlraums significantly reduced backscatter, increasing the 
drive available to the target as well as reducing laser damage 
concerns; has reduced by two orders of magnitude the pro-
duction of suprathermal electrons inside the hohlraum, and 
improved time-dependent symmetry control by reducing 
cross-beam transfer allowing implosion symmetry to be con-
trolled directly through changes in the laser beam power bal-
ance. As opposed to the silicon-doped plastic-capsules used 
for the low and high ‘foot’ campaigns, the introduction of 
HDC capsules [33–36] enables higher velocity implosions 
with higher fuel internal energy that can still theoretically pro-
duce high gain. Many of these improvements can be attributed 
to the shorter laser pulse required for HDC capsules (figure 1).  
Top-performing implosions now regularly exceed 50 kJ of 
fusion output in a regime where the yield is dominated by 
self-heating via the alpha particles produced from the fusion 
reactions and ‘hot spot’ pressures of ~300 Gbar, near ignition 
relevant conditions [37–39]. While the yield performance of 
ID implosions on NIF have improved by more 20×, there are 
still significant challenges to reaching ignition.

Moving forward, there will be a two pronged approach to 
increase performance of the current implosions. Improvements 
in the implosions quality by reducing remaining 3D effects 
such as low mode asymmetries and mix have the potential to 
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increase performance rapidly for small improvements. The 
second approach is to increase the size of the capsule increasing 
its absorbed energy while still controlling the implosion sym-
metry and maintaining implosion velocity. Scaling to larger 
capsule sizes also improves the no alpha burn performance 
as S4.5, where S represents the scale factor and no alpha burn 
means the increased performance does not include alpha 
heating. Once alpha heating is included, the yield perfor-
mance exceeds the S4.5 scaling. Unless the symmetry for larger 
capsules can be controlled using the current hohlraum size, 
increasing the capsule size will require an increase in hohlraum 
size which means additional laser energy will be needed which 
scales as ~EL * S3, where EL is the laser energy for the original 
unscaled target. This paper lays out the current understanding 
of the performance of indirect drive ICF implosions on the NIF 
and the approach to both improving performance as well as 
understanding what steps are needed to achieve ignition. The 
paper will be broken into a description of the current target 
designs in section 2, issues and plans to improve implosions 
qualtiy in section 3, and both high and low mode asymmetries 
and scaling the current designs up in section 4.

2.  Current status

Over the past few years, the principle effort is focused on low 
gas filled hohlraums with HDC capsules (figure 2). The best 
performing designs hinge around a 70 µm thick HDC cap-
sule with an inner radius of 910 µm and ice layer thickness of 
~56 µm. The capsules use a 20 µm thick doped layer with a 
few tenths of a percent of tungsten dopant. The dopant layer 
shields the DT ice layer from hard x-rays generated by the 
laser interactions with the hohlraum wall and is designed to 
reduce decompression of the inner capsule region to improve 
the hydrodynamic stability of the fuel-capsule interface. Work 
in ongoing to optimize the dopant layer in terms of thickness 

and dopant percentage. The capsule is placed at the center 
of a gold hohlraum with a 6.20 mm diameter and a length of 
11.3 mm. The laser entrance holes have a 3.70 mm diameter. 
With ~1.7 MJ of laser energy and a peak power of ~450 TW, 
implosions have achieved greater than 50 kJ of neutron energy 
with hot spot pressures of ~300 Gbar.

For the best performing implosions, the conditions in the 
central hot spot can be deduced from the measurements and 
compared to the generalized Lawson criteria [40] for ICF [41, 
42]. Using one of the best implosions [37] with an ion temper
ature of 4.5  ±  0.15 keV and a down scattered ratio (DSR)6 of 
0.0324  ±  0.002 that translates to a total areal density of 21 * 
DSR  =  0.68  ±  0.04 g cm−2, the performance is ~70% of that 
needed to reach ignition.

Advantages of HDC capsules compared to other ablators 
such as the use of shorter laser pulses, advantageous for sym-
metry control in low gas filled hohlraums, the ability to reach 
high implosion velocities, and a smooth surface finishes to 
reduce ablative hydrodynamic instabilities seeds have made 
it the principle target design ablator. HDC capsules perfor-
mance exceed all past target designs using plastic or beryllium 
making it the principle focus at present in the march towards 
ignition. While gains have been made using HDC, there is still 
more work to do to either improve the quality of the capsule 
implosions or scale the capsule up in size.

Beryllium and plastic (CH) ablators remain potential can-
didates for future target designs. The ablation rate of beryl-
lium enable designs at lower radiation temperatures taking 
advantage of ablative stabilization. This property could enable 
exploration of a larger capsules in a bigger hohlraum where 
the radiation drive is reduced due to laser energy and power 
limits. Experiments have shown good symmetry control in 
low gas filled hohlraums [43, 44] and good performance for 
subscale DT layered implosions [45]. However, challenges 
remain for the beryllium capsule quality. The current strat-
egies for reducing the 3D effects and improved hohlraum 
designs applies directly to both beryllium as well as plastic. 
The lower density of these ablators require longer laser pulses 
which may require improved hohlraums.

The efforts focused on improving the performance of HDC 
capsules applies to other ablator materials with which the 
program has less experience. Regardless of the ablator mat
erial controlling 3D effects is critical to reducing the energy 
necessary to reach ignition. Likewise, determining how to 
drive larger capsules moves towards ignition. Once these 
approaches have been maximized, the trade-offs between 
ablator materials may be valuable.

3.  Quality

The path forward to reduce the required laser energy to achieve 
ignition is to generate ‘1D like’ implosions. Such implosions 
can be driven to higher velocities and convergences leading 
to higher performance. Therefore, one of the key research 
focuses is reducing the sources of 3D imperfections [28]. The 

Figure 1.  Example laser pulse shapes for a low foot (N120321), a 
high foot (N130612), and a three-step HDC pulse (N141019) shape 
[32].

6 DSR is a measure of the fuel areal density and defined as the ratio of the 
measured neutrons with energies of 10–12 MeV to those with 13–15 MeV.
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3D effects are split into low mode asymmetries and high mode 
effects which can be further categorized as feature driven per-
turbations, perforations, or mix due to capsule mounting hard-
ware and fill tube or intrinsic 4-pi hydrodynamic instabilities 
such as Rayleigh–Taylor or Richtmyer–Meshkov that occur 
at interfaces.

3.1.  Low mode

As the ID campaign moved to low gas filled hohlraums, con-
trol of implosion symmetry vastly improved with improved 
consistency between the simulations and measurements, i.e. 
substantially reduced multipliers on the input laser power as 
with the gas filled hohlraum, as well as an empirical under-
standing making the designs more predictable. For ID tar-
gets, control of implosion symmetry depends on the ability 
to deposit the laser energy in the hohlraum at the desired 
locations. The NIF laser is split into outer cone beams 

incident at 44.5 and 50 with respect to the hohlraum axis 
and the inner cone beams at 23.5 and 30 with respect to the 
hohlraum axis. The outer cone beams are pointed at the hohl-
raum wall just inside the laser entrance holes while the inner 
cone beams are pointed to the waist of the hohlraum as in 
figure 3. Symmetry control requires an understanding of the 
hohlraum dynamics that dictate the radiation pattern on the 
capsule. The dynamic nature of the hohlraum as the intense 
lasers ablate material of the hohlraum wall leads to time 
dependent changes that affect where the laser beams deposit 
their energy [46]. The principal challenge is propagation of 
the inner cone laser beams to the waist of the hohlraum. As 
shown in figure 3(a), expansion of the gold plasma ablated 
from the hohlraum by the laser pointed just inside the laser 
entrance holes, known as the ‘gold bubble’, begins to block 
the path of the inner cone beams [47, 48]. Material ablated 
from the surface of the capsule also blows-off into the path 
of the inner cone beams. The work of Callahan et al [49] 

Figure 2.  Nominal (a) hohlraum and (b) capsule schematic for HDC targets.

Figure 3.  (a) Schematic of the hohlraum showing inner and outer cone beams with respect to the plasma expansion of the gold wall and 
capsule. (b) Pulse shapes and x-ray self-emission for a HDC (N160221 [50], a beryllium (N170314 [44], and a CH capsule. Reprinted from 
[50], with the permission of AIP Publishing. (c) Plot of corrected symmetry versus empirical metric.
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shows an empirical relationship for implosion shape in a 
hohlraum derived from experimental values:

 
Epicket,outer

Aouterρfill

tpulse

RHohl

rcap

RHohl

where Epicket,outer is the laser energy in the picket and main 
outer cone portion of the pulse, Aouter is the wall illumination 
area by outer cone beams, ρfill is the gas fill density, τpulse is 
the total length of the laser pulse, RHohl is the radius of the 
hohlraum, rcap is the radius of the capsule. The terms rcap/RHohl 
and τpulse/RHohl address expansion of the capsule and wall 
respectively. The formula represents physical processes that 
affect the symmetry in the hohlraum. The energy in the ini-
tial part of the laser known as the ‘picket’ (figure 3(b)) drives 
early time gold plasma blow-off and setups up initial plasma 
conditions for the energy in the main pulse. The energy in the 
main pulse and the area covered by the laser determine the 
dynamics of the gold bubble expansion that impede the inner 
cone laser beams from reaching the waist of the hohlraum. 
τpulse/RHohl describes the relationship between pulse length 
which determines the expansion time for the gold bubble and 
the distance the bubble has to expand before impeding inner 
code beams. Shorter laser pulses or larger hohlraum radii at the 
outer cone beams help inner cone beam propagation. rcap/RHohl 
captures how much space between the wall and the capsule 
because the capsule blow-off that also affects inner cone 
beam propagation. Expansion of both the wall and the capsule 
plasma block the inner cone beams from reaching the loca-
tions they are pointed. The final factor that determines the gold 
bubble expansion dynamics is the use a low density gas fill   
<0.6 mg cc−1 which provides plasma pressure increasing 
resistance for the gold bubble expansion. The fill density is 
limit to  <0.6 mg cc−1 to ensure both laser plasma instabilities 
and well as cross beam energy transfer remains negligible [51], 
since both have a direct dependence on plasma density. The 
empirical relationship derived based on data is not dimension-
less and exponents used are based on fits the data.

Application of this formula to the data produces a linear 
relationship with the capsule shape as shown in figure 3(c) as 
published in [49]. Development of the relationship between 
shape and the empirical formula uses sets of data at the same 
gas fill density and transforms the measured P2 Legendre 
polynomial coefficient to the coefficient that corresponds to 
the expected shape for a 33% cone fraction, defined as ratio of 
inner cone power to total power. The transformation is linear 
with cone fraction based on the different between the exper
imental and a 33% cone fraction. This process essentially 
normalizes the cone fraction for all experiment for a 1-to-1 
comparison and would not be possible using the same liner 
adjustment to the shape with cone fraction if the hohlraums 
did not behave in a predictable manner [52]. In addition to 
experimental data, the empirical shape scaling is consistent 
with simulations. The rationale for adjusting to a 33% cone 
fraction for comparisons is that a 33% cone fraction permits 
optimal use of NIF’s power and energy due to the ratio of 
inner to outer cone beams. It should be noted that data also 
suggests the trend is relatively independent of the capsule 
material.

Controlling the capsule implosion symmetry is more than 
producing a nearly round implosion at peak compression. 
Preventing swings in the symmetry throughout the pulse is 
also important since energy in the swings reduces drive effi-
ciency [53]. The low gas-filled hohlraum provides direct con-
trol of time-dependent implosion symmetry through adjusting 
the requested laser beam power balance rather than depending 
on time-dependent cross-beam energy transfer determined by 
evolving laser entrance hole plasma conditions. Data meas-
ured with principal diagnostics at different times through the 
laser pulse indicate the symmetry can be controlled with only 
minor swings in shape as shown in figure 4 [50].

While the shape of the x-ray self-emission and neutron 
pinhole measurements show the final hot spot shape can 
be controlled at the level believed to be needed for igni-
tion, measurements suggest asymmetry in the compression 
of the cold fuel and potentially bulk motion of the capsule 

Figure 4.  Data from VISAR early in time, backlight radiaography of the capsule during the implosion, x-ray self-emission from symcaps 
and layered DT implosions show the symmetry with the low gas-filled hohlraums remains nearly round.
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[54]. These asymmetries may be comprised of a combina-
tion of both asymmetries arising from late time control due 
to beam propagation in the hohlraum or 3D effects due to the 
laser-target system which would require different solutions 
to improve the quality of the implosions. Figure 5 shows an 
example of the measurements using neutron activations diag
nostics (NADs) [55, 56] at various locations around the NIF 
target chamber. NADs measure the absolute number of neu-
trons above a given threshold through interacting of the neu-
trons with a high-Z activation foil. The neutron flux through 
each foil can be determined by counting the decay of the 
radioactive nuclei from the foil. Based on the measured flux 
from the NADS, the number of 14 MeV neutrons produced 
by an implosion can be measured in the direction of each 
foil. Reconstruction of the flux measured by each foil and its 
position around the chamber is used as a measure of the areal 
cold fuel density since the flux is reduced by neutron col
lision in the dense fuel depending on the ρR, where ρ is den-
sity and R is the thickness of the fuel in a given direction. The 
reconstruction shown in figure 5 for shot 170702-001 shows 
a common variation in the fuel thickness with higher flux, or 
thinner ice, is represented by red and lower flux, or thicker ice 
is represented by blue. The neutron flux variations are attrib-
uted to variations in the ρR (density  ×  thickness) in the ice 
layer. Further analysis of the signals measured by the neutron 

time of flight detectors [57, 58] show that there is also bulk 
motion of the capsule [59, 60]. Before these asymmetries can 
be mitigated, their respective sources must be understood and 
diagnosed, which remains an important component of cur
rent programmatic efforts. Efforts to reconstruct the ice layer 
density using three orthogonal neutron images are being 
developed. The neutron imaging systems [61] can measure 
both the neutrons generated by fusion reactions in the hot 
spot called the primary neutrons, as well as the neutron scat-
tered by the cold compressed fuel called the downscattered 
neutrons. Since the downscattered neutrons lose energy, an 
image gating system is used to discern the two populations of 
neutrons. Using both the primary and downscattered neutron 
images from three lines of site the shape of the cold fuel can 
be reconstructed [62]. In addition, imaging of the compressed 
cold fuel by short pulse point projection radiography based 
on Compton scattering of high energy x-rays is under devel-
opment [63, 64].

In addition to improved diagnostics, engineering and sci-
entific teams have been examining other potential sources of 

Figure 5.  Map of the neutron yield variations as measured by the neutron flux measured by the NADs placed at different locations around 
the target chamber denoted by the circles for shot N171029.

Figure 6.  Three hohlraum designs being pursued to enable 
symmetry control for longer laser pulses.

Figure 7.  Experimental data from experiments comparing 10 and 
5 µm file tubes showing (a) capsule radiographs prior to shots, 
(b) hydrogrowth radiography data for shots N160413 (10 µm) and 
N170126 (5 µm) [79].
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asymmetries. For instance, just prior to the laser being fired, 
a set of shrouds used to block IR radiation from the chamber 
needed to control the target temperature near the DT triple 
point open. Vibrations due to the shroud opening are expected 
to damp-out prior to the shot. However, there are some indi-
cations this may not be true causing the target to move from 
its originally aligned position. Other potential issues are also 
being examined such as small laser peak power imbalances, 
power balance during the foot of the laser pulse, and diag
nostic holes in the target [65, 66]. While these effects may 
produce small improvements of the current symmetry, they 
may account for an estimated ~1.5×  improvement in perfor-
mance at the current levels of alpha heating [54, 67].

The basic understanding in low gas filled hohlraums has 
led to improved performance. To capitalize on the knowledge 
to make the next advance in performance, modifications to 
the hohlraum design are in progress to improve late-time 
symmetry control, one of the limiting factors believed to fur-
ther improvement in symmetry control for longer laser pulse 
lengths. Figure 6 shows the leading candidates including foam 
liners [68, 69], rugby hohlraums [70–73], and the I-raum 
[74]. The foam lined hohlraums use pressure from the heated 
foam material to slow the wall expansion. The alternate hohl-
raum shape/geometry concepts enable the inner beam lasers 
to propagate to the designed location for longer laser pulses 
needed to implode larger capsules while controlling sym-
metry. The rugby hohlraum offer the potential for the most 
gain by not only controlling symmetry but coupling signifi-
cantly more energy to the capsule. However, more work is 
needed to demonstrate these improvements and ensure laser 
plasma instabilities do not erase all gains.

3.2.  High mode asymmetries

Mixing at the ablator/ice interface or ice/gas interface are 
the toughest challenges in mitigating the 3D nature of the 
implosions. It has long been know that mixing of the ablator 
and ice into the hot spot occurs as a result of surface rough-
ness and engineering features such as the fill tube and tent 

used to mount the capsule in the hohlraum [29, 30]. The 
strategy to mitigate the effect of the 3D engineering features 
for indirectly driving implosions is to reduce the perturba-
tion seed [75, 76]. For instance, the original fill tubes were 
10 µm in diameter. Recently, the size has been reduced to  
5 µm which has had a notable effect on performance. As 
shown in figure 7, measurements using the hydro-growth radi-
ography platform (HGR) [77] to measure the growth of pertur-
bation show a notable reduction in growth due to the fill tube 
[68, 69, 78, 79]. This is consistent with x-ray self-emission 
observations as well. Using the 5 µm fill tube on DT layered 
implosions has shown notable improvement in performance 
outside uncertainty bands [80], and development of a 2 µm 
fill tube is in progress. Similarly, there are several concepts to 
mitigate the capsule mounting hardware [81]. Tents designed 
to cover a smaller region near the capsule poles [82], small 
wire supports, or low density materials to separate mounting 
hardware from capsule.

Other target characteristics such as surface roughness, 
internal ablator structure, and dopants are sources of hydrody-
namic instabilities that degrade performance through mixing 
the shell or DT ice into the hot spot quenching the burn. The 
introduction of HDC [83, 84] ablators have reduced ablative 
hydrodynamic instabilities as a result of the high radiation 
temperature x-ray drives and improve surface finish which 
reduces the initial instability seeds [85]. This enables higher 
velocity implosions that have a strong dependence on per-
formance by enabling a larger ratio of the initial to final fuel 
mass, v ~ ln(mf/mi) where v is velocity mf is the final ablator 
mass and mi is the initial ablator mass. That being said, the 
high convergences of the capsule implosions do make the 
performance sensitive to seeds for mix since the effects are 
amplified by compression [86]. Moreover, direct measure-
ment of the instability growth in spherical geometry at high 
convergence is very challenging. Understanding 4π mix 
driven by hydrodynamic instabilities that occur at each inter-
face and cover 4π steradians of the interface is challenging. 4π 
mix is typically understood through simulations and inferred 
through performance measured in experiments. For instance, 

Figure 8.  Data and simulations for a comparison of variation in tungsten dopant for HDC DT layered experiments showing improve 
performance with dopant and simulations that show the dopant stabilizes interface [87].
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mixing at the ablator/ice interface has a strong dependence on 
the dopant buried a few microns insider the inner surface of 
the capsule, which moderates the Atwood number by reducing 
pre-heating by Au m-band emission from the hohlraum. This 
is illustrated in figure 8 by simulations which show a more 
stable interface in the target that contains the dopant and a 
corresponding increase in performance [87, 88]. High resolu-
tion velocimetry measurements of the expansion of the rear 
surface of ablator materials has shown that perturbations may 
be seeded by the microstructure in crystalline materials such 
as beryllium and diamond [89] and is sensitive to both the 
crystalline structure and shock pressure. Efforts are underway 
to develop techniques that can measure mix at high conv
ergence ratios (~10–20) related to the ablator/ice interfaces 
using x-ray self-emission backlighting [90, 91], high resolu-
tion imaging with a spherical crystal imager [92], and cylin-
drical implosion platforms [93].

4.  Scaling

Another means to improve target performance is increasing 
the size of the target, i.e. scaling both hohlraum and capsule, 
while preserving all other properties. A linear scaling of the 
target hydrodynamically scales the capsule size, i.e. scaling 
with sound speed transit times, preserving the implosion 
dynamics [94]. This does assume the capsule drive provided 
by the hohlraum also scales which has not been demonstrated. 
Using this scaling, the yield without alpha heating, i.e. no 
burn, scale as Y ~ S4.5, where Y is neutron yield and S is scale, 
due to the increase in the volume of the burn region, the addi-
tional confinement time due to the sound speed crossing time 
of the disassembly of the implosion and less thermal conduc-
tion losses. Combining the no alpha heating scaling with a 
model for alpha capture and using the hydro-scaling for the 
laser energy, E ~ S3, and power, P ~ S2, a curve based on 
the performance of an experiment can be derived as shown 
in figure 9(a). The laser energy axis provides an estimate of 
the laser energy needed for the current quality implosions to 
reach a given yield. At laser energies near 3 MJ, implosions 
can enter a burning plasma phase in which the alpha heating 
exceed all loss mechanisms. At laser energies in the range 
of 3.5–4 MJ, gains greater than one may be achieved. These 
estimates are based on the current quality of HDC implosions 
on NIF represented by the data points in pink. The caveat to 
these estimates is that some processes and target parameters 
do not hydro-scale, chief amongst these being alpha-heating 
and laser matter interactions including laser plasma instabili-
ties. These are highly non-linear processes which add signifi-
cant uncertainty to the simple analytic estimate. The impact 
of these processes, as well as other mechanisms that do not 
scale hydrodyanmically, are being investigated to determine 
how they affect target performance with increased size. In 
additions, it should be noted that work is ongoing to develop 
ways to increase the capsule size without increasing the hohl-
raum size which could lead to greater target performance for 
any given laser energy and power. The real challenge to the 
scaling is estimating the level of confidence which becomes 
more uncertain as the estimates move away from the region 
where data is available. This is shown by the black dashed 
lines in figure 9 which are notional at this time.

A significant effort to interpret and utilize the data to 
quantify the uncertainties for the scaling is underway. 
Uncertainty quantification beyond regions where data is avail-
able is a field of study unto itself. The work along with uti-
lizing state of the art tools such as machine learning is being 
applied to this problem for ICF. Large ensembles of simu-
lations with machine learning techniques are being used to 
determine the principle metrics for ICF implosion perfor-
mance [95–99]. Large ensembles of simulation output and 
experimental data are being coupled with machine learning 
techniques to propagate and incorporate uncertainty in pre-
dictions to new regimes, assessing and evaluating competing 

Figure 9.  (a) Estimated neutron yield based on no burn scaling 
from HDC data in pink with estimates for alpha self-heating. 
Black dashed curves represent notional bounds [37, 50]. 
(b) Hydrodynamic target scaling.
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hypotheses for performance in the face of statistical, exper
imental and numerical uncertainties.

Concurrently, with the experimental efforts to improve ICF 
performance, work is ongoing to improve laser performance 
generating higher laser energy and power. As technology 
progresses and understanding of laser damage/mitigation 
advances [100], possible paths to increasing the laser energy 
at 351 nm are being investigated, and there is an option to 
move the 527 nm laser light which should exceed 4 MJ [101–
103]. Increased laser energy enables larger hohlraums and 
capsules to be driven as a means to improve performance with 
the caveat that laser plasma instabilities specifically stimu-
lated Brillouin scattering at late times is still an unknown risk.

5.  Conclusions

Considerable progress has been made toward thermonuclear 
ICF ignition over the past eight years, but many challenges 
remain. The highly integrated multi-physics nature of ICF 
makes it difficult to identify all physics mechanisms that may 
be degrading performance or inadequacies in models due to 
compensating and coupling between effects. The strategy 
going forward is to continue to identify and to address phe-
nomena that affect implosion quality, namely 3D effects due 
to both low and high mode asymmetries. Efforts will con-
tinue to address identified remaining low mode asymmetries 
while making an asserted effort to address high mode mix. 
This entails reducing the effect of engineering features and 
addressing other sources of mix. Due to the difficulty in mea-
suring mix for high convergence system and ongoing research 
into the understanding of mix, this effort will be a focus for 
the near future since time is needed to determine what is 
missing in our understanding. There is a concurrent effort to 
increase the capsule size in an attempt to couple more energy 
to the fuel to increase performance. Once the 1D nature of 
the implosion is improved it may also be possible to further 
stress implosion velocity and convergence ratio to increase 
performance without 3D effects negating any gains. This will 
require improved drivers to maintain symmetry control with 
bigger capsules. All of these efforts will feed into design that 
can utilize higher laser energies when available to scale up the 
targets.
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